Beta-VLDL in hepatic lipase deficiency induces apoE-mediated cholesterol ester accumulation in macrophages.
نویسندگان
چکیده
Hepatic lipase-deficient subjects in the Ontario kindred are compound heterozygotes for hepatic lipase mutations (Ser267-->Phe and Thr383-->Met). Cholesteryl ester-rich beta-very-low-density lipoprotein (beta-VLDL) accumulates in plasma and such subjects have premature atherosclerosis. To determine a possible mechanism, we hypothesized that hepatic lipase-deficient beta-VLDL, homozygous for apolipoprotein (apo) E3, would cause cholesteryl ester accumulation and foam cell formation in macrophages. beta-VLDL and pre-beta-VLDL were isolated by Pevikon electrophoresis and incubated with J774 macrophages, cells that do not secrete apoE. beta-VLDL increased cellular cholesteryl ester content 13-fold, whereas pre-beta-VLDL increased cholesteryl ester sevenfold. beta-VLDL increased acyl CoA:cholesterol acyltransferase activity fourfold (measured as [14C]oleate incorporation into cholesteryl ester). Preincubation of hepatic lipase-deficient beta-VLDL with the anti-apoE monoclonal antibody 1D7, which inhibits binding of apoE to low-density lipoprotein receptors, inhibited cellular cholesteryl ester accumulation by 75%, whereas the anti-apoB blocking monoclonal antibody 5E11 failed to inhibit cellular cholesteryl ester accumulation. In contrast to hepatic lipase deficiency, beta-VLDL from type III subjects (E2/E2) failed to increase cellular cholesteryl ester or acyl CoA:cholesterol acyltransferase more than 1.5-fold. Thus, hepatic lipase-deficient beta-VLDL readily induces cholesteryl ester accumulation in J774 macrophages, a process mediated by functional apoE3. This may explain the premature atherosclerosis observed in this kindred.
منابع مشابه
)3-VLDL in Hepatic Lipase Deficiency Induces ApoE-Mediated Cholesterol Ester Accumulation in Macrophages
Hepatic lipase-deficient subjects in the Ontario kindred are compound heterozygotes for hepatic lipase mutations (Ser^-^Phe and Thr^^Met). Cholesteryl ester-rich 0-very-low-density lipoprotein (/3VLDL) accumulates in plasma and such subjects have premature atherosclerosis. To determine a possible mechanism, we hypothesized that hepatic lipase-deficient 0-VLDL, homozygous for apolipoprotein (apo...
متن کاملEvidence that cholesteryl ester and triglyceride accumulation in J774 macrophages induced by very low density lipoprotein subfractions occurs by different mechanisms.
The present investigations have examined the mechanism(s) whereby Sf 60-400 very low density lipoproteins (VLDL) from Type IV hypertriglyceridemic subjects cause cholesteryl ester and triglyceride accumulation in J774 macrophages. Both apolipoprotein (apo) E-poor and apoE-rich Type IV VLDL subfractions, isolated by heparin-Sepharose chromatography, were capable of enhancing cellular cholesterol...
متن کاملCholesteryl ester synthesis in macrophages: stimulation by beta-very low density lipoproteins from cholesterol-fed animals of several species.
Animals fed cholesterol accumulate several types of cholesterol-rich lipoproteins in their plasma and ultimately develop cholesteryl ester deposition in tissue macrophages. Previous studies in the cholesterol-fed dog have shown that one class of cholesterol-rich lipoproteins. beta-migrating very low density lipoproteins (beta-VLDL, density < 1.006 g/ml), possesses a unique ability to produce ce...
متن کاملHepatic perfusate very low density lipoproteins obtained from fat-fed nonhuman primates stimulate cholesterol esterification in macrophages.
The livers of both baboons and rhesus monkeys fed a high fat, high cholesterol diet secreted very low density lipoproteins (VLDL) that were enriched in cholesteryl ester and apoe as compared to VLDL secreted by the livers of chow-fed animals. Stimulation of macrophage cholesterol esterification by the experimental VLDL was compared to that produced by the standard beta-VLDL obtained from the pl...
متن کاملLipoprotein lipase- and hepatic triglyceride lipase- promoted very low density lipoprotein degradation proceeds via an apolipoprotein E-dependent mechanism.
Apolipoprotein E (apoE) is the primary recognition signal on triglyceride-rich lipoproteins responsible for interacting with low density lipoprotein (LDL) receptors and LDL receptor-related protein (LRP). It has been shown that lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) promote receptor-mediated uptake and degradation of very low density lipoproteins (VLDL) and remnant part...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis and thrombosis : a journal of vascular biology
دوره 13 9 شماره
صفحات -
تاریخ انتشار 1993